BFpack - Flexible Bayes Factor Testing of Scientific Expectations
Implementation of default Bayes factors for testing
statistical hypotheses under various statistical models. The
package is intended for applied quantitative researchers in the
social and behavioral sciences, medical research, and related
fields. The Bayes factor tests can be executed for statistical
models such as univariate and multivariate normal linear
models, correlation analysis, generalized linear models,
special cases of linear mixed models, survival models,
relational event models. Parameters that can be tested are
location parameters (e.g., group means, regression
coefficients), variances (e.g., group variances), and measures
of association (e.g,.
polychoric/polyserial/biserial/tetrachoric/product moments
correlations), among others. The statistical underpinnings are
described in Mulder and Xin (2022)
<DOI:10.1080/00273171.2021.1904809>, Mulder and Gelissen (2019)
<DOI:10.1080/02664763.2021.1992360>, Mulder (2016)
<DOI:10.1016/j.jmp.2014.09.004>, Mulder and Fox (2019)
<DOI:10.1214/18-BA1115>, Mulder and Fox (2013)
<DOI:10.1007/s11222-011-9295-3>, Boeing-Messing, van Assen,
Hofman, Hoijtink, and Mulder (2017) <DOI:10.1037/met0000116>,
Hoijtink, Mulder, van Lissa, and Gu (2018)
<DOI:10.1037/met0000201>, Gu, Mulder, and Hoijtink (2018)
<DOI:10.1111/bmsp.12110>, Hoijtink, Gu, and Mulder (2018)
<DOI:10.1111/bmsp.12145>, and Hoijtink, Gu, Mulder, and Rosseel
(2018) <DOI:10.1037/met0000187>. When using the packages,
please refer to Mulder et al. (2021)
<DOI:10.18637/jss.v100.i18>.